Venez en toute sécurité dans nos centres ! Voir notre dispositif sanitaire

> Formations > Technologies numériques > Big Data, Intelligence Artificielle > IA, Machine Learning, analyse de données > Formation Machine learning, l'état de l'art > Formations > Technologies numériques > Formation Machine learning, l'état de l'art
Formation incontournable

Machine learning, l'état de l'art

Machine learning, l'état de l'art

Télécharger au format pdf Partager cette formation par e-mail


Ce séminaire détaille les enjeux liés au traitement de la donnée par l'Intelligence Artificielle, et en particulier par les algorithmes du Machine Learning. Il montre aux décideurs, les principaux algorithmes du domaine, les solutions concrètes et la démarche de projet à appliquer selon les cas d'usages en entreprise.


Inter
Intra
Sur mesure

Séminaire en présentiel ou en classe à distance

Réf : MLE
Prix : 2030 € HT
  2j - 14h
Pauses-café et
déjeuners offerts




Ce séminaire détaille les enjeux liés au traitement de la donnée par l'Intelligence Artificielle, et en particulier par les algorithmes du Machine Learning. Il montre aux décideurs, les principaux algorithmes du domaine, les solutions concrètes et la démarche de projet à appliquer selon les cas d'usages en entreprise.

Objectifs pédagogiques

À l’issue de la formation, le participant sera en mesure de :
  • Comprendre les enjeux de l'utilisation du Machine Learning dans l'entreprise
  • Positionner le Machine Learning dans la chaîne de traitement de la donnée
  • Distinguer les compétences nécessaires ou les profils à recruter
  • Identifier les clés de réussite d'un projet autour du Machine Learning

Objectifs pédagogiques

Public concerné

Dirigeants d'entreprise (CEO, COO, CFO, SG, DRH...), DSI, les CDO, responsables informatiques, consultants, responsables de projets Big Data.

Public concerné

Prérequis

Posséder une culture informatique de base. La connaissance des bases des mathématiques statistiques est un plus.

Prérequis

Programme de la formation

Histoire du Machine Learning et contexte du Big Data
  • Replacer à leur échelle les concepts d'Intelligence Artificielle, apprentissage automatique (machine learning)...
  • Le lien avec les mathématiques, les statistiques (inférentielles), le data mining et la data science.
  • Passer de l'analyse descriptive à l'analyse prédictive puis prescriptive.
  • Les applications du Machine Learning (moteurs de recherche, détection des spams, lecture des chèques).
  • La typologie des algorithmes de Dominique CARDON.
  • La communauté Data Science et les challenges Kaggle (ex. de Netflix).
  • Replacer à leur échelle les concepts d'Intelligence Artificielle, apprentissage automatique (machine learning)...
  • Le lien avec les mathématiques, les statistiques (inférentielles), le data mining et la data science.
  • Passer de l'analyse descriptive à l'analyse prédictive puis prescriptive.
  • Les applications du Machine Learning (moteurs de recherche, détection des spams, lecture des chèques).
  • La typologie des algorithmes de Dominique CARDON.
  • La communauté Data Science et les challenges Kaggle (ex. de Netflix).

Les données à disposition : collecte et préparation
  • Données structurées, semi-structurées et non structurées.
  • Nature statistique des données (qualitatives ou quantitatives).
  • Objets connectés (IoT) et streaming.
  • Opportunités et limites de l'Open Data.
  • Identification des corrélations, problème de la multicolinéarité.
  • Réduction des dimensions par Analyse des Composantes Principales.
  • Détection et correction des valeurs aberrantes.
  • Les ETL (Extract Transform Load).
  • Le Web scraping.
  • Données structurées, semi-structurées et non structurées.
  • Nature statistique des données (qualitatives ou quantitatives).
  • Objets connectés (IoT) et streaming.
  • Opportunités et limites de l'Open Data.
  • Identification des corrélations, problème de la multicolinéarité.
  • Réduction des dimensions par Analyse des Composantes Principales.
  • Détection et correction des valeurs aberrantes.
  • Les ETL (Extract Transform Load).
  • Le Web scraping.
Démonstration
Démonstration d'un ETL (Extract Transform Load). Recueil de données Web.

Les outils du marché pour le traitement de la donnée et le Machine Learning
  • Les logiciels traditionnels (SAS, SPSS, Stata...) et leur ouverture à l'Open Source.
  • Choisir entre les deux leaders Open Source : Python et R.
  • Plateformes Cloud (Azure, AWS, Google Cloud Platform) et solutions SaaS (IBM Watson, Dataïku).
  • Nouveaux postes en entreprises : data engineer, data scientist, data analyst, etc.
  • Associer les bonnes compétences à ces différents outils.
  • Les API en ligne (IBM Watson, Microsoft Cortana Intelligence...).
  • Les chatbots (agents conversationnels).
  • Les logiciels traditionnels (SAS, SPSS, Stata...) et leur ouverture à l'Open Source.
  • Choisir entre les deux leaders Open Source : Python et R.
  • Plateformes Cloud (Azure, AWS, Google Cloud Platform) et solutions SaaS (IBM Watson, Dataïku).
  • Nouveaux postes en entreprises : data engineer, data scientist, data analyst, etc.
  • Associer les bonnes compétences à ces différents outils.
  • Les API en ligne (IBM Watson, Microsoft Cortana Intelligence...).
  • Les chatbots (agents conversationnels).
Démonstration
Démonstration d'un chatbot (agent conversationnel) et d'Azure Machine Learning.

Les différents types d'apprentissage en Machine Learning
  • Apprentissage supervisé : répéter un exemple.
  • Apprentissage non supervisé : découvrir les données.
  • Online (Machine) Learning par opposition aux techniques batch.
  • Reinforcement learning : optimisation d'une récompense.
  • Autres types d'apprentissage (par transfert, séquentiel, actif...).
  • Illustrations (moteurs de recommandation...).
  • Apprentissage supervisé : répéter un exemple.
  • Apprentissage non supervisé : découvrir les données.
  • Online (Machine) Learning par opposition aux techniques batch.
  • Reinforcement learning : optimisation d'une récompense.
  • Autres types d'apprentissage (par transfert, séquentiel, actif...).
  • Illustrations (moteurs de recommandation...).
Démonstration
Démonstrations sur les différents types d'apprentissage Machine Learning possibles.

Les algorithmes du Machine Learning
  • Régression linéaire simple et multiple. Limites des approches linéaires.
  • Régression polynomiale (LASSO). Séries temporelles.
  • Régression logistique et applications en scoring.
  • Classification hiérarchique et non hiérarchique (KMeans).
  • Classification par arbres de décision ou approche Naïve Bayes.
  • Ramdom Forest (développement des arbres de décision).
  • Gradiant Boosting. Réseaux de neurones. Machine à support de vecteurs.
  • Deep Learning : exemples et raisons du succès actuel.
  • Text Mining : analyse des corpus de données textuelles.
  • Régression linéaire simple et multiple. Limites des approches linéaires.
  • Régression polynomiale (LASSO). Séries temporelles.
  • Régression logistique et applications en scoring.
  • Classification hiérarchique et non hiérarchique (KMeans).
  • Classification par arbres de décision ou approche Naïve Bayes.
  • Ramdom Forest (développement des arbres de décision).
  • Gradiant Boosting. Réseaux de neurones. Machine à support de vecteurs.
  • Deep Learning : exemples et raisons du succès actuel.
  • Text Mining : analyse des corpus de données textuelles.
Démonstration
Démonstration des différents algorithmes de base sous R ou Python.

Procédure d'entraînement et d'évaluation des algorithmes
  • Séparation du jeu de données : entraînement, test et validation.
  • Techniques de bootstrap (bagging).
  • Exemple de la validation croisée.
  • Définition d'une métrique de performance.
  • Descente de gradient stochastique (minimisation de la métrique).
  • Courbes ROC et de lift pour évaluer et comparer les algorithmes.
  • Matrice de confusion : faux positifs et faux négatifs.
  • Séparation du jeu de données : entraînement, test et validation.
  • Techniques de bootstrap (bagging).
  • Exemple de la validation croisée.
  • Définition d'une métrique de performance.
  • Descente de gradient stochastique (minimisation de la métrique).
  • Courbes ROC et de lift pour évaluer et comparer les algorithmes.
  • Matrice de confusion : faux positifs et faux négatifs.
Démonstration
Démonstration du choix du meilleur algorithme.

Mise en production d'un algorithme de Machine Learning
  • Description d'une plateforme Big Data.
  • Principe de fonctionnement des API.
  • Du développement à la mise en production.
  • Stratégie de maintenance corrective et évolutive.
  • Evaluation du coût de fonctionnement en production.
  • Description d'une plateforme Big Data.
  • Principe de fonctionnement des API.
  • Du développement à la mise en production.
  • Stratégie de maintenance corrective et évolutive.
  • Evaluation du coût de fonctionnement en production.
Démonstration
Démonstration d'API de géolocalisation et d'analyse de sentiments.

Aspects éthiques et juridiques liés à l'Intelligence Artificielle
  • Missions de la CNIL et évolutions à venir.
  • Question du droit d'accès aux données personnelles.
  • Question de la propriété intellectuelle des algorithmes.
  • Nouveaux rôles dans l'entreprise : Chief Data Officer et Data Protection Officer.
  • Question de l'impartialité des algorithmes.
  • Attention au biais de confirmation.
  • Les secteurs et les métiers touchés par l'automatisation.
  • Missions de la CNIL et évolutions à venir.
  • Question du droit d'accès aux données personnelles.
  • Question de la propriété intellectuelle des algorithmes.
  • Nouveaux rôles dans l'entreprise : Chief Data Officer et Data Protection Officer.
  • Question de l'impartialité des algorithmes.
  • Attention au biais de confirmation.
  • Les secteurs et les métiers touchés par l'automatisation.
Réflexion collective
Réflexion en commun pour identifier les clés de réussite.


Programme de la formation

Solutions de financement

Selon votre situation, votre formation peut être financée par :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
Contactez nos équipes pour en savoir plus sur les financements à activer.

Solutions de financement

Avis clients

4,3 / 5
PARCO PIERRE EMMANUEL L.
23/09/21
5 / 5

Pour une formation « état de l’art » cette formation va au-delà de l’acculturation avec des concepts mathématiques et informatiques assez poussés nécessitant un bagage suffisant pour être appréhendés.
FABRICE S.
23/09/21
3 / 5

Formateur très compétent. Parfois des difficultés à vulgariser. Et on passe vite sur certains concepts. Sûrement lié à la densité de la formation sur un temps aussi court
JULIEN N.
23/09/21
5 / 5

Le contenu est complet et balaie bien les différentes techniques. La formation est assez dense et nécessite quelques prérequis pour tout comprendre. Le parcours peut être parfois trop rapide.


Les avis clients sont issus des feuilles d’évaluation de fin de formation. La note est calculée à partir de l’ensemble des avis datant de moins de 12 mois.


Avis clients

Horaires

En présentiel, les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
En classe à distance, la formation démarre à partir de 9h.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 15h30 le dernier jour.

Infos pratiques

Dates et lieux

Pour vous inscrire, sélectionnez la ville et la date de votre choix.
Du 16 au 17 décembre 2021
Paris La Défense
Session garantie
S’inscrire
Du 16 au 17 décembre 2021
Classe à distance
Session garantie
S’inscrire
Du 27 au 28 janvier 2022
Classe à distance
S’inscrire
Du 27 au 28 janvier 2022
Paris La Défense
S’inscrire
Du 27 au 28 janvier 2022
Luxembourg
S’inscrire
Du 27 au 28 janvier 2022
Genève
S’inscrire
Du 27 au 28 janvier 2022
Bruxelles
S’inscrire
Du 10 au 11 mars 2022
Paris La Défense
S’inscrire
Du 10 au 11 mars 2022
Classe à distance
S’inscrire
Du 2 au 3 juin 2022
Classe à distance
S’inscrire
Du 2 au 3 juin 2022
Paris La Défense
S’inscrire
Du 2 au 3 juin 2022
Luxembourg
S’inscrire
Du 2 au 3 juin 2022
Bruxelles
S’inscrire
Du 2 au 3 juin 2022
Genève
S’inscrire
Du 4 au 5 août 2022
Genève
S’inscrire
Du 4 au 5 août 2022
Bruxelles
S’inscrire
Du 4 au 5 août 2022
Luxembourg
S’inscrire
Du 4 au 5 août 2022
Paris La Défense
S’inscrire
Du 4 au 5 août 2022
Classe à distance
S’inscrire
Du 29 au 30 septembre 2022
Classe à distance
S’inscrire
Du 29 au 30 septembre 2022
Paris La Défense
S’inscrire
Du 24 au 25 novembre 2022
Paris La Défense
S’inscrire
Du 24 au 25 novembre 2022
Luxembourg
S’inscrire
Du 24 au 25 novembre 2022
Classe à distance
S’inscrire
Du 24 au 25 novembre 2022
Bruxelles
S’inscrire
Du 24 au 25 novembre 2022
Genève
S’inscrire

Dates et lieux